RegulonDB RegulonDB 11.2: Gene Form
   

tnaA gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

tnaA tnaB tnaC terminator

Gene      
Name: tnaA    Texpresso search in the literature
Synonym(s): ECK3701, EG11005, b3708, ind, tnaR
Genome position(nucleotides): 3888730 --> 3890145
Strand: forward
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
50.85
External database links:  
ASAP:
ABE-0012133
CGSC:
101
ECHOBASE:
EB0998
ECOLIHUB:
tnaA
NCBI-GENE:
948221
OU-MICROARRAY:
b3708
STRING:
511145.b3708
COLOMBOS: tnaA


Product      
Name: tryptophanase
Synonym(s): Ind, TnaA, TnaR
Sequence: Get amino acid sequence Fasta Format
Cellular location: cytosol,membrane
Molecular weight: 52.773
Isoelectric point: 6.135
Motif(s):
 
Type Positions Sequence Comment
49 -> 437 DLLTDSGTGAVTQSMQAAMMRGDEAYSGSRSYYALAESVKNIFGYQYTIPTHQGRGAEQIYIPVLIKKREQEKGLDRSKMVAFSNYFFDTTQGHSQINGCTVRNVYIKEAFDTGVRYDFKGNFDLEGLERGIEEVGPNNVPYIVATITSNSAGGQPVSLANLKAMYSIAKKYDIPVVMDSARFAENAYFIKQREAEYKDWTIEQITRETYKYADMLAMSAKKDAMVPMGGLLCMKDDSFFDVYTECRTLCVVQEGFPTYGGLEGGAMERLAVGLYDGMNLDWLAYRIAQVQYLVDGLEEIGVVCQQAGGHAAFVDAGKLLPHIPADQFPAQALACELYKVAGIRAVEIGSFLLGRDPKTGKQLPCPAELLRLTIPRATYTQTHMDFIIE
137 -> 140 DTTQ UniProt: In Ref. 1; no nucleotide entry..
294 -> 294 C UniProt: Identical to wild-type..
298 -> 298 C UniProt: Alters activity..
379 -> 380 QA UniProt: In Ref. 1; AAA24676 and 2; CAA34096..

 

Classification:
Multifun Terms (GenProtEC)  
  1 - metabolism --> 1.1 - carbon utilization --> 1.1.3 - amino acids
Gene Ontology Terms (GO)  
cellular_component GO:0005737 - cytoplasm
GO:0005829 - cytosol
GO:0016020 - membrane
GO:0032991 - protein-containing complex
GO:0060187 - cell pole
molecular_function GO:0003824 - catalytic activity
GO:0005515 - protein binding
GO:0016829 - lyase activity
GO:0016830 - carbon-carbon lyase activity
GO:0030170 - pyridoxal phosphate binding
GO:0009034 - tryptophanase activity
GO:0030955 - potassium ion binding
GO:0042802 - identical protein binding
GO:0080146 - L-cysteine desulfhydrase activity
biological_process GO:0006568 - tryptophan metabolic process
GO:0006520 - cellular amino acid metabolic process
GO:0009072 - aromatic amino acid family metabolic process
GO:0006569 - tryptophan catabolic process
Note(s): Note(s): ...[more].
Reference(s): [1] Boon N., et al., 2020
[2] Chong H., et al., 2014
[3] Chu HY., et al., 2017
[4] Geng H., et al., 2015
[5] Gutierrez-Huante M., et al., 2019
[6] Han TH., et al., 2011
[7] Kanda T., et al., 2020
[8] Liu J., et al., 2017
[9] Liu L., et al., 2018
[10] Liu S., et al., 2017
[11] Masuda Y., et al., 2020
[12] Pringle SL., et al., 2017
[13] Taylor HV., et al., 1978
[14] Wu Y., et al., 2018
External database links:  
ALPHAFOLD:
P0A853
DIP:
DIP-31878N
ECOCYC:
TRYPTOPHAN-MONOMER
ECOLIWIKI:
b3708
INTERPRO:
IPR011166
INTERPRO:
IPR018176
INTERPRO:
IPR015424
INTERPRO:
IPR015422
INTERPRO:
IPR015421
INTERPRO:
IPR013440
INTERPRO:
IPR001597
MODBASE:
P0A853
PDB:
4W1Y
PDB:
2V0Y
PDB:
4W4H
PDB:
4UP2
PDB:
2OQX
PDB:
5D8G
PDB:
2C44
PDB:
2V1P
PFAM:
PF01212
PRIDE:
P0A853
PRODB:
PRO_000024075
PROSITE:
PS00853
REFSEQ:
NP_418164
SMR:
P0A853
SWISSMODEL:
P0A853
UNIPROT:
P0A853


Operon      
Name: tnaCAB         
Operon arrangement:
Transcription unit        Promoter
tnaC
tnaCAB
tnaAB


Transcriptional Regulation      
Display Regulation             
Activated by: CRP, TorR


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References


Reference(s)    

 [1] Boon N., Kaur M., Aziz A., Bradnick M., Shibayama K., Eguchi Y., Lund PA., 2020, The Signaling Molecule Indole Inhibits Induction of the AR2 Acid Resistance System in Escherichia coli., Front Microbiol 11:474

 [2] Chong H., Geng H., Zhang H., Song H., Huang L., Jiang R., 2014, Enhancing E. coli isobutanol tolerance through engineering its global transcription factor cAMP receptor protein (CRP)., Biotechnol Bioeng 111(4):700-8

 [3] Chu HY., Sprouffske K., Wagner A., 2017, The role of recombination in evolutionary adaptation of Escherichia coli to a novel nutrient., J Evol Biol 30(9):1692-1711

 [4] Geng H., Jiang R., 2015, cAMP receptor protein (CRP)-mediated resistance/tolerance in bacteria: mechanism and utilization in biotechnology., Appl Microbiol Biotechnol 99(11):4533-43

 [5] Gutierrez-Huante M., Martinez-Duncker ME., Sauceda E., Sanchez J., 2019, The antibiotics potentiator bicarbonate causes upregulation of tryptophanase and iron acquisition proteins in Escherichia coli., Lett Appl Microbiol 68(1):87-95

 [6] Han TH., Lee JH., Cho MH., Wood TK., Lee J., 2011, Environmental factors affecting indole production in Escherichia coli., Res Microbiol 162(2):108-16

 [7] Kanda T., Abiko G., Kanesaki Y., Yoshikawa H., Iwai N., Wachi M., 2020, RNase E-dependent degradation of tnaA mRNA encoding tryptophanase is prerequisite for the induction of acid resistance in Escherichia coli., Sci Rep 10(1):7128

 [8] Liu J., Summers D., 2017, Indole at low concentration helps exponentially growing Escherichia coli survive at high temperature., PLoS One 12(12):e0188853

 [9] Liu L., Liu Y., Zhang G., Ge Y., Fan X., Lin F., Wang J., Zheng H., Xie X., Zeng X., Chen PR., 2018, Genetically Encoded Chemical Decaging in Living Bacteria., Biochemistry 57(4):446-450

 [10] Liu S., Wu N., Zhang S., Yuan Y., Zhang W., Zhang Y., 2017, Variable Persister Gene Interactions with (p)ppGpp for Persister Formation in Escherichia coli., Front Microbiol 8:1795

 [11] Masuda Y., Sakamoto E., Honjoh KI., Miyamoto T., 2020, Role of Toxin-Antitoxin-Regulated Persister Population and Indole in Bacterial Heat Tolerance., Appl Environ Microbiol 86(16)

 [12] Pringle SL., Palmer KL., McLean RJ., 2017, Indole production provides limited benefit to Escherichia coli during co-culture with Enterococcus faecalis., Arch Microbiol 199(1):145-153

 [13] Taylor HV., Yudkin MD., 1978, Synthesis of tryptophanase in Escherichia coli: isolation and characterization of a structural-gene mutant and two regulatory mutants., Mol Gen Genet 165(1):95-102

 [14] Wu Y., Chen J., Liu Z., Wang F., 2018, Identification of pyridoxal phosphate-modified proteins using mass spectrometry., Rapid Commun Mass Spectrom 32(3):195-200


RegulonDB