RegulonDB RegulonDB 11.2:Regulon Page
   

SoxS DNA-binding transcriptional dual regulator

Synonyms: SoxS
Summary:
SoxS is a dual transcriptional activator and participates in the removal of superoxide and nitric oxide and protection from organic solvents and antibiotics [14, 27, 32, 33, 34, 35, 36]. SoxS shares 49% identity with MarA and the N-terminal domain of Rob [37]. These proteins activate a common set of about 50 target genes [1, 6, 38, 39], the marA/soxS/rob regulon, involved in antibiotic resistance [12, 40, 41], superoxide resistance [34, 42, 43], and tolerance to organic solvents [36, 44] and heavy metals [45].
Read more >


Transcription factor      
TF conformation(s):
Name Conformation Type TF-Effector Interaction Type Apo/Holo Conformation Evidence Confidence level (C: Confirmed, S: Strong, W: Weak) References
SoxS Functional   nd nd nd
Evolutionary Family: AraC/XylS
TFBs length: 20
TFBs symmetry: asymmetric
Connectivity class: Local Regulator
Gene name: soxS
  Genome position: 4277060-4277383
  Length: 324 bp / 107 aa
Operon name: soxS
TU(s) encoding the TF:
Transcription unit        Promoter
soxS
soxSp


Regulon       
Regulated gene(s) acnA, acrA, acrB, acrZ, aldA, decR, fldA, fldB, fpr, fumC, fur, inaA, marA, marB, marR, micF, nepI, nfo, nfsA, nfsB, ompN, ompW, pgi, poxB, pqiA, pqiB, pqiC, ptsG, ribA, rimK, rob, sodA, soxS, tolC, uof, waaY, waaZ, ybjC, ybjN, ydbK, ygiB, ygiC, yrbL, zinT, zwf
Multifun term(s) of regulated gene(s) MultiFun Term (List of genes associated to the multifun term)
membrane (8)
drug resistance/sensitivity (7)
Transcription related (6)
activator (5)
repressor (5)
Read more >
Regulated operon(s) acrAB, acrZ, aldA, decR, fldA-uof-fur, fldB, fpr, fumAC, hcp-hcr-poxB-ltaE-ybjT, inaA, marRAB, micF, nepI, nfo, nfsB, ompW, pgi, pqiABC, ptsG, ribA, rirA-waaQGPSBOJYZU, rob, sodA, soxS, tolC-ygiBC, ybjC-nfsA-rimK-ybjN, ydbK-ompN, ymiC-acnA, yrbL, zinT, zwf
First gene in the operon(s) acnA, acrA, acrZ, aldA, decR, fldA, fldB, fpr, fumC, inaA, marR, micF, nepI, nfo, nfsB, ompW, pgi, poxB, pqiA, ptsG, waaY, ribA, rob, sodA, soxS, tolC, uof, ybjC, ydbK, yrbL, zinT, zwf
Simple and complex regulons AcrR,CRP,CpxR,Cra,Fis,MarA,MarR,Rob,SoxS
AcrR,EnvR,MarA,MprA,PhoP,Rob,SoxS
AcrR,FNR,Fur,SoxR,SoxS
AcrR,H-NS,HU,IHF,Lrp,MarA,OmpR,Rob,SoxS
ArcA,CRP,Cra,FNR,MarA,Rob,SoxS
Read more >
Simple and complex regulatory phrases Regulatory phrase (List of promoters regulated by the phrase)
[SoxS,-](3)
[SoxS,+](34)


Transcription factor regulation    


Transcription factor binding sites (TFBSs) arrangements
      

  Functional conformation Function Promoter Sigma factor Central Rel-Pos Distance to first Gene Genes Sequence
LeftPos RightPos Evidence Confidence level (C: Confirmed, S: Strong, W: Weak) References
  SoxS activator acnAp2 Sigma70 -51.5 -101.5 acnA
aaggtttctcCTCTTTTATCAATTTGGGTTGttatcaaatc
1335720 1335740 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [EXP-IEP-RNA-SEQ], [COMP-HINF], [COMP-HINF-SIMILAR-TO-CONSENSUS], [EXP-CHIP-EXO-MANUAL], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] C [1], [1], [2], [2], [3]
  SoxS activator acrAp Sigma70 -72.5 -151.5 acrA, acrB
ttgcgcttctTGTTTGGTTTTTCGTGCCATatgttcgtga
485761 485780 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [EXP-IEP-RNA-SEQ], [COMP-HINF], [COMP-HINF-SIMILAR-TO-CONSENSUS], [EXP-CHIP-EXO-MANUAL], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] C [2], [2], [3], [4], [4]
  SoxS activator acrZp Sigma70 -40.5 -62.5 acrZ
cgcaaagctgACCGCACAAAAGGGGAGTGCttttctgtgc
794701 794720 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-HINF] W [5], [5]
  SoxS activator aldAp Sigma70 -161.0 -203.0 aldA
gcgatggaaaGTCGCTCGTTACGTTAAAAAttgcccgttt
1488019 1488038 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-AINF-SIMILAR-TO-CONSENSUS] W [1], [1]
  SoxS activator decRp Sigma70 -63.0 -94.0 decR
tttgcgttgaATTTGTCATTTTGTGCCGTGgtgtttaaac
468279 468298 [EXP-IEP-RNA-SEQ], [COMP-HINF], [EXP-CHIP-EXO-MANUAL] S [2], [2]
  SoxS activator fldAp nd -61.5 -117.5 fldA, uof, fur
ttccactttcATGTAGCACAGTGTGCAGTCctgctcgttt
711573 711592 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [EXP-IEP-RNA-SEQ], [COMP-HINF], [COMP-HINF-SIMILAR-TO-CONSENSUS], [EXP-CHIP-EXO-MANUAL], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] C [2], [2], [4], [4], [6], [7], [7]
  SoxS activator fldBp Sigma70 -49.0 -82.0 fldB
ttatggtcacTCATTTGATCCATTATGCCTtattgtgccg
3039763 3039782 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-HINF-SIMILAR-TO-CONSENSUS] W [8], [8]
  SoxS activator fldBp Sigma70 -38.0 -71.0 fldB
catttgatccATTATGCCTTATTGTGCCGTGactaaagcga
3039774 3039794 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-HINF-SIMILAR-TO-CONSENSUS] W [1], [1], [8], [8]
  SoxS activator fprp Sigma70 -56.5 -83.5 fpr
cctctgattgATTTGATCGATTGAGCCTTCcagtccttcg
4114546 4114565 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [EXP-IEP-RNA-SEQ], [COMP-HINF], [COMP-HINF-SIMILAR-TO-CONSENSUS], [EXP-CHIP-EXO-MANUAL], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] C [2], [2], [3], [3], [4], [6], [9], [9]
  SoxS activator fumCp2 Sigma38 19.5 -102.5 fumC
ggtttttttaCATGGCACGAAAGACCAAACatttgttatc
1686681 1686700 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [EXP-IEP-RNA-SEQ], [COMP-HINF], [EXP-CHIP-EXO-MANUAL], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] C [2], [2], [6], [9], [9], [10], [11]
  SoxS activator inaAp Sigma70 -41.5 -68.5 inaA
attcattaatACGACACGTTTCATTAAGATtttcctcagg
2349531 2349550 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-HINF-SIMILAR-TO-CONSENSUS], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] S [3], [3], [4], [6]
  SoxS activator marRp Sigma70 -61.5 -88.5 marR, marA, marB
acttgaaccgATTTAGCAAAACGTGGCATCggtcaattca
1619022 1619041 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-HINF-SIMILAR-TO-CONSENSUS], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] S [3], [4], [12]
  SoxS activator micFp1 Sigma70 -119.5 -119.5 micF
aagattattgCGGAATGGCGAAATAAGCACctaacatcaa
2312955 2312974 [EXP-IEP-RNA-SEQ], [COMP-HINF], [EXP-CHIP-EXO-MANUAL], [EXP-IDA-BINDING-OF-CELLULAR-EXTRACTS], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] C [2], [2], [13], [14], [14]
  SoxS activator micFp1 Sigma70 -38.5 -38.5 micF
gtatttgacaGCACTGAATGTCAAAACAAAaccttcactc
2313036 2313055 [EXP-IEP-RNA-SEQ], [COMP-HINF], [EXP-CHIP-EXO-MANUAL], [EXP-IDA-BINDING-OF-CELLULAR-EXTRACTS], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] C [2], [2], [13], [14], [14]
  SoxS activator micFp2 Sigma38 -119.5 -119.5 micF
aagattattgCGGAATGGCGAAATAAGCACctaacatcaa
2312955 2312974 [EXP-IEP-RNA-SEQ], [COMP-HINF], [EXP-CHIP-EXO-MANUAL], [EXP-IDA-BINDING-OF-CELLULAR-EXTRACTS], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] C [2], [2], [13], [14], [14]
  SoxS activator micFp2 Sigma38 -38.5 -38.5 micF
gtatttgacaGCACTGAATGTCAAAACAAAaccttcactc
2313036 2313055 [EXP-IEP-RNA-SEQ], [COMP-HINF], [EXP-CHIP-EXO-MANUAL], [EXP-IDA-BINDING-OF-CELLULAR-EXTRACTS], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] C [2], [2], [13], [14], [14]
  SoxS activator nepIp nd 6.0 -27.0 nepI
gttaaagtggTCGGCTTTTCCCCTGAAACAtgccacgggt
3841756 3841775 [EXP-IEP-RNA-SEQ], [COMP-HINF], [EXP-CHIP-EXO-MANUAL] S [2], [2]
  SoxS activator nfop Sigma70 -37.0 -71.0 nfo
caaagcgtcaTCGCATAAACCACTACATCTtgctcctgtt
2250759 2250778 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-HINF-SIMILAR-TO-CONSENSUS], [EXP-CHIP-EXO], [EXP-IDA-BINDING-OF-CELLULAR-EXTRACTS] S [2], [4], [14], [15], [16]
  SoxS activator nfop Sigma70 -26.0 -60.0 nfo
cgcataaaccACTACATCTTGCTCCTGTTAacccgctatc
2250770 2250789 [EXP-IEP-RNA-SEQ], [COMP-HINF], [EXP-CHIP-EXO-MANUAL] S [2], [2]
  SoxS activator nfsBp Sigma70 -43.5 -72.5 nfsB
agcggaaatcTATAGCGCATTTTTCTCGCTTaccatttctc
605487 605507 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-HINF-SIMILAR-TO-CONSENSUS], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] S [1], [1], [3], [3]
  SoxS repressor ompWp nd nd nd ompW nd nd [EXP-IEP-GENE-EXPRESSION-ANALYSIS] W [17]
  SoxS activator pgip Sigma70 -39.5 -75.5 pgi
cattacgctaACGGCACTAAAACCATCACATttttctgtga
4233673 4233693 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-HINF-SIMILAR-TO-CONSENSUS] W [1], [1], [18]
  SoxS activator pgip2 Sigma38 -39.5 -75.5 pgi
cattacgctaACGGCACTAAAACCATCACATttttctgtga
4233673 4233693 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-HINF-SIMILAR-TO-CONSENSUS] W [1], [1], [18]
  SoxS activator poxBp1 Sigma70 -60.5 -87.5 poxB
ttcatcgggcTATTTAACCGTTAGTGCCTCctttctctcc
911127 911146 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-HINF-SIMILAR-TO-CONSENSUS] W [4]
  SoxS activator poxBp2 Sigma38 -60.5 -87.5 poxB
ttcatcgggcTATTTAACCGTTAGTGCCTCctttctctcc
911127 911146 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-HINF-SIMILAR-TO-CONSENSUS] W [4]
  SoxS activator pqiAp1 Sigma70 -40.0 -375.0 pqiA, pqiB, pqiC
ccgcggcaaaAGCAGAAACTGTAAAACGCAgcagtagcaa
1011616 1011635 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-HINF-SIMILAR-TO-CONSENSUS], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS], [EXP-IMP-SITE-MUTATION] C [4], [19]
  SoxS activator pqiAp3 Sigma38 -40.0 -375.0 pqiA, pqiB, pqiC
ccgcggcaaaAGCAGAAACTGTAAAACGCAgcagtagcaa
1011616 1011635 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-HINF-SIMILAR-TO-CONSENSUS], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS], [EXP-IMP-SITE-MUTATION] C [4], [19]
  SoxS activator ptsGp1 nd -83.5 -186.5 ptsG
ttgtgacataTGTTTTGTCAAAATGTGCAACttctccaatg
1157673 1157693 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-HINF-SIMILAR-TO-CONSENSUS], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] S [18], [18]
  SoxS activator ribAp1 Sigma70 -69.0 -99.0 ribA
aggaaaaattGACAGATTTGTGCCATTCCGtgaacgatcg
1339249 1339268 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [EXP-IEP-RNA-SEQ], [COMP-HINF], [COMP-HINF-SIMILAR-TO-CONSENSUS], [EXP-CHIP-EXO-MANUAL], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] C [2], [2], [4], [4], [20], [21], [21]
  SoxS repressor robp nd -19.5 -62.5 rob
actgaatgctAAAACAGCAAAAAATGCTATtatccaatta
4635363 4635382 [COMP-HINF-SIMILAR-TO-CONSENSUS], [EXP-CHIP-EXO], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] S [2], [22], [22]
  SoxS activator sodAp Sigma70 -44.0 -95.0 sodA
cccttacgaaAAGTACGGCATTGATAATCAttttcaatat
4100705 4100724 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [EXP-IEP-RNA-SEQ], [COMP-HINF], [COMP-HINF-SIMILAR-TO-CONSENSUS], [EXP-CHIP-EXO-MANUAL], [EXP-IDA-BINDING-OF-CELLULAR-EXTRACTS], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] C [2], [2], [3], [3], [6], [6], [15], [16]
  SoxS repressor soxSp Sigma70 3.0 -38.0 soxS
gaattatactCCCCAACAGATGAATTAACGaactgaacac
4277411 4277430 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [EXP-IEP-RNA-SEQ], [COMP-HINF], [EXP-CHIP-EXO-MANUAL], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] C [2], [2], [23], [23]
  SoxS activator tolCp3 nd -40.5 -93.5 tolC, ygiB, ygiC
ttaacgccctATGGCACGTAACGCCAACCTTttgcggtagc
3178012 3178032 [COMP-AINF-SIMILAR-TO-CONSENSUS], [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-AINF-SIMILAR-TO-CONSENSUS] W [24], [24], [25], [25], [26], [26]
  SoxS activator tolCp4 Sigma38 -52.5 -93.5 tolC, ygiB, ygiC
ttaacgccctATGGCACGTAACGCCAACCTTttgcggtagc
3178012 3178032 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-AINF-SIMILAR-TO-CONSENSUS] W [24], [25], [26], [26]
  SoxS activator uofp nd -61.5 -165.5 uof, fur
tacgccgtatTAATAGATAATGCCAATCAAaataattgct
710881 710900 [EXP-IEP-RNA-SEQ], [COMP-HINF], [EXP-CHIP-EXO], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] C [2], [2], [7], [7]
  SoxS activator waaYp Sigma70 -42.5 -213.5 waaY, waaZ
gcaactaaacCGTGGCACAAATGGGCAATTtatccatcgg
3801169 3801188 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-HINF-SIMILAR-TO-CONSENSUS], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] S [27], [27]
  SoxS activator ybjCp Sigma70 -56.5 -77.5 ybjC, nfsA, rimK, ybjN
ggtttaacctGTTGCATTAATTGCTAAAAGctataactgt
890826 890845 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [EXP-IEP-RNA-SEQ], [COMP-HINF], [COMP-HINF-SIMILAR-TO-CONSENSUS], [EXP-CHIP-EXO-MANUAL], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] C [2], [2], [3], [3], [10], [28], [28]
  SoxS activator ybjCp Sigma70 -40.5 -61.5 ybjC, nfsA, rimK, ybjN
ttaattgctaAAAGCTATAACTGTTAAACACaatacagtga
890842 890862 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-HINF-SIMILAR-TO-CONSENSUS], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] S [1], [1], [3], [3]
  SoxS activator ydbKp nd -54.5 -101.5 ydbK, ompN
gctgatgtggGGGACACAAAAGCGAAAATGcagaagaaag
1440876 1440895 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-HINF-SIMILAR-TO-CONSENSUS], [EXP-CHIP-EXO], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS], [EXP-IMP-SITE-MUTATION] C [2], [29], [29]
  SoxS activator ydbKp nd -50.5 -97.5 ydbK, ompN
atgtgggggaCACAAAAGCGAAAATGCAGAagaaagccat
1440872 1440891 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-HINF-SIMILAR-TO-CONSENSUS], [EXP-CHIP-EXO], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS], [EXP-IMP-SITE-MUTATION] C [2], [29], [29]
  SoxS activator yrbLp nd -26.0 -57.0 yrbL
taagaggcatTGTTTAGGTTTTGTTTAAGTtaatcgacca
3348385 3348404 [EXP-IEP-RNA-SEQ], [COMP-HINF], [EXP-CHIP-EXO-MANUAL] S [2], [2]
  SoxS activator zinTp Sigma70 nd nd zinT nd nd [EXP-IEP-GENE-EXPRESSION-ANALYSIS] W [30]
  SoxS activator zwfp Sigma70 -51.5 -113.5 zwf
ttttcccgtaATCGCACGGGTGGATAAGCGtttacagttt
1936418 1936437 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [EXP-IEP-RNA-SEQ], [COMP-HINF], [COMP-HINF-SIMILAR-TO-CONSENSUS], [EXP-CHIP-EXO-MANUAL], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS], [EXP-IMP-SITE-MUTATION] C [2], [2], [3], [4], [6], [15], [16]



High-throughput Transcription factor binding sites (TFBSs)
      

  Functional conformation Function Object name Object type Distance to first Gene Sequence LeftPos RightPos Center Position Growth Condition Evidence Confidence level (C: Confirmed, S: Strong, W: Weak) References
  SoxS activator mdaB Transcription-Unit nd
cgcaaaagacTTTGCACATTTTGCTAATTTcaccgtaccg
3172452 3172471 3172462.0 nd [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-AINF-SIMILAR-TO-CONSENSUS] W [1]
  SoxS activator map-glnD-dapD Transcription-Unit nd
aatcattctgAATTTCGCCAAACGTGCCACtgaaggtttt
189597 189616 189607.0 nd [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-AINF-SIMILAR-TO-CONSENSUS] W [1]
  SoxS activator yhbW Transcription-Unit nd
gcctaagtaaATAGCTCACTTTGTTAACAActttaactac
3303372 3303391 3303382.0 nd [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-AINF-SIMILAR-TO-CONSENSUS] W [1]
  SoxS activator cadA Gene nd
nd
nd nd nd nd [EXP-IEP-GENE-EXPRESSION-ANALYSIS] W [31]
Other High-throughput regulatory interactions with weak evidence


Alignment and PSSM for SoxS TFBSs    

Aligned TFBS of SoxS   
  Sequence
  GAATTTGTCATTTTGTGCCGTG
  ATGTTTGGTCTTTCGTGCCATG
  TTGTTTGGTTTTTCGTGCCATA
  CTATTTAACCGTTAGTGCCTCC
  TAAATTGCCCATTTGTGCCACG
  TGTTTTGACATTCAGTGCTGTC
  TGATTTGATCGATTGAGCCTTC
  GCTTTTAGCAATTAATGCAACA
  TCATTTGATCCATTATGCCTTA
  AAGGTTGGCGTTACGTGCCATA
  GCGTTTTACAGTTTCTGCTTTT
  CGATTTAGCAAAACGTGGCATC
  TGTTTTGTCAAAATGTGCAACT
  AGATGTAGTGGTTTATGCGATG
  AAATTGACAGATTTGTGCCATT
  TCTTTTATCAATTTGGGTTGTT
  GTGTTTAACAGTTATAGCTTTT
  GATAATAGCATTTTTTGCTGTT
  GCATTTTCGCTTTTGTGTCCCC
  ATTTTTAACGTAACGAGCGACT
  TCATGTAGCACAGTGTGCAGTC
  CGTATTAATAGATAATGCCAAT
  ATGTGATGGTTTTAGTGCCGTT
  AGCACTCCCCTTTTGTGCGGTC
  AATCTTAATGAAACGTGTCGTA
  ACGCTTATCCACCCGTGCGATT
  GAAAATGATTATCAATGCCGTA
  TTAATTCATCTGTTGGGGAGTA
  GTTAGGTGCTTATTTCGCCATT
  ATGTTTCAGGGGAAAAGCCGAC
  TCTATAGCGCATTTTTCTCGCT
  GCATTGTTTAGGTTTTGTTTAA

Position weight matrix (PWM). SoxS matrix-quality result   
A	10	7	13	8	2	2	13	12	1	12	10	9	6	8	6	4	0	0	4	13	3	8
C	3	9	1	2	1	0	3	5	17	10	2	1	3	7	1	1	1	25	18	1	7	8
G	9	7	8	1	4	3	11	10	4	6	8	3	1	0	20	2	31	2	4	12	0	4
T	10	9	10	21	25	27	5	5	10	4	12	19	22	17	5	25	0	5	6	6	22	12

Consensus   
;	consensus.strict             	gcattTggccttttGtGCcgtt
;	consensus.strict.rc          	AACGGCACAAAAGGCCAAATGC
;	consensus.IUPAC              	dsdttTrrymdttyGtGCcryy
;	consensus.IUPAC.rc           	RRYGGCACRAAHKRYYAAAHSH
;	consensus.regexp             	[agt][cg][agt]ttT[ag][ag][ct][ac][agt]tt[ct]GtGCc[ag][ct][ct]
;	consensus.regexp.rc          	[AG][AG][CT]GGCAC[AG]AA[ACT][GT][AG][CT][CT]AAA[ACT][CG][ACT]

PWM logo   


 


Evolutionary conservation of regulatory elements    
     Note: Evolutionary conservation of regulatory interactions and promoters is limited to gammaproteobacteria.
TF-target gene evolutionary conservation
Promoter-target gene evolutionary conservation




Reference(s)    

 [1] Martin RG., Rosner JL., 2002, Genomics of the marA/soxS/rob regulon of Escherichia coli: identification of directly activated promoters by application of molecular genetics and informatics to microarray data., Mol Microbiol 44(6):1611-24

 [2] Seo SW., Kim D., Szubin R., Palsson BO., 2015, Genome-wide Reconstruction of OxyR and SoxRS Transcriptional Regulatory Networks under Oxidative Stress in Escherichia coli K-12 MG1655., Cell Rep 12(8):1289-99

 [3] Martin RG., Rosner JL., 2011, Promoter discrimination at class I MarA regulon promoters mediated by glutamic acid 89 of the MarA transcriptional activator of Escherichia coli., J Bacteriol 193(2):506-15

 [4] Martin RG., Gillette WK., Rhee S., Rosner JL., 1999, Structural requirements for marbox function in transcriptional activation of mar/sox/rob regulon promoters in Escherichia coli: sequence, orientation and spatial relationship to the core promoter., Mol Microbiol 34(3):431-41

 [5] Hobbs EC., Yin X., Paul BJ., Astarita JL., Storz G., 2012, Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance., Proc Natl Acad Sci U S A 109(41):16696-701

 [6] Pomposiello PJ., Bennik MH., Demple B., 2001, Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate., J Bacteriol 183(13):3890-902

 [7] Zheng M., Doan B., Schneider TD., Storz G., 1999, OxyR and SoxRS regulation of fur., J Bacteriol 181(15):4639-43

 [8] Gaudu P., Weiss B., 2000, Flavodoxin mutants of Escherichia coli K-12., J Bacteriol 182(7):1788-93

 [9] Jair KW., Martin RG., Rosner JL., Fujita N., Ishihama A., Wolf RE., 1995, Purification and regulatory properties of MarA protein, a transcriptional activator of Escherichia coli multiple antibiotic and superoxide resistance promoters., J Bacteriol 177(24):7100-4

 [10] Benov L., Fridovich I., 2002, Induction of the soxRS regulon of Escherichia coli by glycolaldehyde., Arch Biochem Biophys 407(1):45-8

 [11] Park SJ., Gunsalus RP., 1995, Oxygen, iron, carbon, and superoxide control of the fumarase fumA and fumC genes of Escherichia coli: role of the arcA, fnr, and soxR gene products., J Bacteriol 177(21):6255-62

 [12] Martin RG., Jair KW., Wolf RE., Rosner JL., 1996, Autoactivation of the marRAB multiple antibiotic resistance operon by the MarA transcriptional activator in Escherichia coli., J Bacteriol 178(8):2216-23

 [13] Delihas N., Forst S., 2001, MicF: an antisense RNA gene involved in response of Escherichia coli to global stress factors., J Mol Biol 313(1):1-12

 [14] Li Z., Demple B., 1994, SoxS, an activator of superoxide stress genes in Escherichia coli. Purification and interaction with DNA., J Biol Chem 269(28):18371-7

 [15] Jair KW., Fawcett WP., Fujita N., Ishihama A., Wolf RE., 1996, Ambidextrous transcriptional activation by SoxS: requirement for the C-terminal domain of the RNA polymerase alpha subunit in a subset of Escherichia coli superoxide-inducible genes., Mol Microbiol 19(2):307-17

 [16] Fawcett WP., Wolf RE., 1995, Genetic definition of the Escherichia coli zwf "soxbox," the DNA binding site for SoxS-mediated induction of glucose 6-phosphate dehydrogenase in response to superoxide., J Bacteriol 177(7):1742-50

 [17] Zhang P., Ye Z., Ye C., Zou H., Gao Z., Pan J., 2019, OmpW is positively regulated by iron via Fur, and negatively regulated by SoxS contribution to oxidative stress resistance in Escherichia coli., Microb Pathog 138:103808

 [18] Rungrassamee W., Liu X., Pomposiello PJ., 2008, Activation of glucose transport under oxidative stress in Escherichia coli., Arch Microbiol 190(1):41-9

 [19] Koh YS., Roe JH., 1996, Dual regulation of the paraquat-inducible gene pqi-5 by SoxS and RpoS in Escherichia coli., Mol Microbiol 22(1):53-61

 [20] Koh YS., Choih J., Lee JH., Roe JH., 1996, Regulation of the ribA gene encoding GTP cyclohydrolase II by the soxRS locus in Escherichia coli., Mol Gen Genet 251(5):591-8

 [21] Koh YS., Chung WH., Lee JH., Roe JH., 1999, The reversed SoxS-binding site upstream of the ribA promoter in Escherichia coli., Mol Gen Genet 261(2):374-80

 [22] Schneiders T., Levy SB., 2006, MarA-mediated transcriptional repression of the rob promoter., J Biol Chem 281(15):10049-55

 [23] Nunoshiba T., Hidalgo E., Li Z., Demple B., 1993, Negative autoregulation by the Escherichia coli SoxS protein: a dampening mechanism for the soxRS redox stress response., J Bacteriol 175(22):7492-4

 [24] Aono R., Tsukagoshi N., Yamamoto M., 1998, Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12., J Bacteriol 180(4):938-44

 [25] Rodionov DA., Gelfand MS., Mironov AA., Rakhmaninova AB., 2001, Comparative approach to analysis of regulation in complete genomes: multidrug resistance systems in gamma-proteobacteria., J Mol Microbiol Biotechnol 3(2):319-24

 [26] Zhang A., Rosner JL., Martin RG., 2008, Transcriptional activation by MarA, SoxS and Rob of two tolC promoters using one binding site: a complex promoter configuration for tolC in Escherichia coli., Mol Microbiol 69(6):1450-5

 [27] Lee JH., Lee KL., Yeo WS., Park SJ., Roe JH., 2009, SoxRS-mediated lipopolysaccharide modification enhances resistance against multiple drugs in Escherichia coli., J Bacteriol 191(13):4441-50

 [28] Paterson ES., Boucher SE., Lambert IB., 2002, Regulation of the nfsA Gene in Escherichia coli by SoxS., J Bacteriol 184(1):51-8

 [29] Nakayama T., Yonekura S., Yonei S., Zhang-Akiyama QM., 2013, Escherichia coli pyruvate:flavodoxin oxidoreductase, YdbK - regulation of expression and biological roles in protection against oxidative stress., Genes Genet Syst 88(3):175-88

 [30] Puskarova A., Ferianc P., Kormanec J., Homerova D., Farewell A., Nystrom T., 2002, Regulation of yodA encoding a novel cadmium-induced protein in Escherichia coli., Microbiology 148(Pt 12):3801-11

 [31] Akhova A., Nesterova L., Shumkov M., Tkachenko A., null, Cadaverine biosynthesis contributes to decreased Escherichia coli susceptibility to antibiotics., Res Microbiol 172(7-8):103881

 [32] Demple B, 1996, Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon--a review., Gene, 179(1):53 10.1016/s0378-1119(96)00329-0

 [33] Semchyshyn H, Bagnyukova T, Lushchak V, 2005, Involvement of soxRS regulon in response of Escherichia coli to oxidative stress induced by hydrogen peroxide., Biochemistry (Mosc), 70(11):1238 10.1007/s10541-005-0253-6

 [34] Nunoshiba T., Hidalgo E., Amabile Cuevas CF., Demple B., 1992, Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene., J Bacteriol 174(19):6054-60

 [35] Amabile-Cuevas CF., Demple B., 1991, Molecular characterization of the soxRS genes of Escherichia coli: two genes control a superoxide stress regulon., Nucleic Acids Res 19(16):4479-84

 [36] White DG, Goldman JD, Demple B, Levy SB, 1997, Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli., J Bacteriol, 179(19):6122 10.1128/jb.179.19.6122-6126.1997

 [37] Cohen SP., Hachler H., Levy SB., 1993, Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli., J Bacteriol 175(5):1484-92

 [38] Barbosa TM, Levy SB, 2000, Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA., J Bacteriol, 182(12):3467 10.1128/JB.182.12.3467-3474.2000

 [39] Martin RG, Rosner JL, 2003, Analysis of microarray data for the marA, soxS, and rob regulons of Escherichia coli., Methods Enzymol, 370(None):278 10.1016/S0076-6879(03)70024-X

 [40] Griffith KL, Becker SM, Wolf RE, 2005, Characterization of TetD as a transcriptional activator of a subset of genes of the Escherichia coli SoxS/MarA/Rob regulon., Mol Microbiol, 56(4):1103 10.1111/j.1365-2958.2005.04599.x

 [41] Ariza RR., Li Z., Ringstad N., Demple B., 1995, Activation of multiple antibiotic resistance and binding of stress-inducible promoters by Escherichia coli Rob protein., J Bacteriol 177(7):1655-61

 [42] Jair KW., Yu X., Skarstad K., Thony B., Fujita N., Ishihama A., Wolf RE., 1996, Transcriptional activation of promoters of the superoxide and multiple antibiotic resistance regulons by Rob, a binding protein of the Escherichia coli origin of chromosomal replication., J Bacteriol 178(9):2507-13

 [43] Wu J, Weiss B, 1992, Two-stage induction of the soxRS (superoxide response) regulon of Escherichia coli., J Bacteriol, 174(12):3915 10.1128/jb.174.12.3915-3920.1992

 [44] Aono R, 1998, Improvement of organic solvent tolerance level of Escherichia coli by overexpression of stress-responsive genes., Extremophiles, 2(3):239 10.1007/s007920050066

 [45] Nakajima H, Kobayashi K, Kobayashi M, Asako H, Aono R, 1995, Overexpression of the robA gene increases organic solvent tolerance and multiple antibiotic and heavy metal ion resistance in Escherichia coli., Appl Environ Microbiol, 61(6):2302 10.1128/aem.61.6.2302-2307.1995

 [46] Rosner JL, Dangi B, Gronenborn AM, Martin RG, 2002, Posttranscriptional activation of the transcriptional activator Rob by dipyridyl in Escherichia coli., J Bacteriol, 184(5):1407 10.1128/JB.184.5.1407-1416.2002

 [47] Rosenberg EY., Bertenthal D., Nilles ML., Bertrand KP., Nikaido H., 2003, Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein., Mol Microbiol 48(6):1609-19

 [48] Jain K, Saini S, 2016, MarRA, SoxSR, and Rob encode a signal dependent regulatory network in Escherichia coli., Mol Biosyst, 12(6):1901 10.1039/c6mb00263c

 [49] Molina-Quiroz RC, Loyola DE, Díaz-Vásquez WA, Arenas FA, Urzúa U, Pérez-Donoso JM, Vásquez CC, 2014, Global transcriptomic analysis uncovers a switch to anaerobic metabolism in tellurite-exposed Escherichia coli., Res Microbiol, 165(7):566 10.1016/j.resmic.2014.07.003

 [50] Pomposiello PJ., Koutsolioutsou A., Carrasco D., Demple B., 2003, SoxRS-regulated expression and genetic analysis of the yggX gene of Escherichia coli., J Bacteriol 185(22):6624-32

 [51] Wood TI., Griffith KL., Fawcett WP., Jair KW., Schneider TD., Wolf RE., 1999, Interdependence of the position and orientation of SoxS binding sites in the transcriptional activation of the class I subset of Escherichia coli superoxide-inducible promoters., Mol Microbiol 34(3):414-30

 [52] Kwon HJ., Bennik MH., Demple B., Ellenberger T., 2000, Crystal structure of the Escherichia coli Rob transcription factor in complex with DNA., Nat Struct Biol 7(5):424-30

 [53] Dangi B., Pelupessey P., Martin RG., Rosner JL., Louis JM., Gronenborn AM., 2001, Structure and dynamics of MarA-DNA complexes: an NMR investigation., J Mol Biol 314(1):113-27

 [54] Griffith KL., Wolf RE., 2001, Systematic mutagenesis of the DNA binding sites for SoxS in the Escherichia coli zwf and fpr promoters: identifying nucleotides required for DNA binding and transcription activation., Mol Microbiol 40(5):1141-54

 [55] Griffith KL, Shah IM, Myers TE, O'Neill MC, Wolf RE, 2002, Evidence for "pre-recruitment" as a new mechanism of transcription activation in Escherichia coli: the large excess of SoxS binding sites per cell relative to the number of SoxS molecules per cell., Biochem Biophys Res Commun, 291(4):979 10.1006/bbrc.2002.6559

 [56] Martin RG, Gillette WK, Martin NI, Rosner JL, 2002, Complex formation between activator and RNA polymerase as the basis for transcriptional activation by MarA and SoxS in Escherichia coli., Mol Microbiol, 43(2):355 10.1046/j.1365-2958.2002.02748.x

 [57] Shah IM, Wolf RE, 2004, Novel protein--protein interaction between Escherichia coli SoxS and the DNA binding determinant of the RNA polymerase alpha subunit: SoxS functions as a co-sigma factor and redeploys RNA polymerase from UP-element-containing promoters to SoxS-dependent promoters during oxidative stress., J Mol Biol, 343(3):513 10.1016/j.jmb.2004.08.057

 [58] Zafar MA, Shah IM, Wolf RE, 2010, Protein-protein interactions between sigma(70) region 4 of RNA polymerase and Escherichia coli SoxS, a transcription activator that functions by the prerecruitment mechanism: evidence for "off-DNA" and "on-DNA" interactions., J Mol Biol, 401(1):13 10.1016/j.jmb.2010.05.052

 [59] Zafar MA, Sanchez-Alberola N, Wolf RE, 2011, Genetic evidence for a novel interaction between transcriptional activator SoxS and region 4 of the ?(70) subunit of RNA polymerase at class II SoxS-dependent promoters in Escherichia coli., J Mol Biol, 407(3):333 10.1016/j.jmb.2010.12.037

 [60] Gallegos MT., Schleif R., Bairoch A., Hofmann K., Ramos JL., 1997, Arac/XylS family of transcriptional regulators., Microbiol Mol Biol Rev 61(4):393-410

 [61] Griffith KL, Wolf RE, 2002, A comprehensive alanine scanning mutagenesis of the Escherichia coli transcriptional activator SoxS: identifying amino acids important for DNA binding and transcription activation., J Mol Biol, 322(2):237 10.1016/s0022-2836(02)00782-9

 [62] Rhee S, Martin RG, Rosner JL, Davies DR, 1998, A novel DNA-binding motif in MarA: the first structure for an AraC family transcriptional activator., Proc Natl Acad Sci U S A, 95(18):10413 10.1073/pnas.95.18.10413

 [63] Wu J., Weiss B., 1991, Two divergently transcribed genes, soxR and soxS, control a superoxide response regulon of Escherichia coli., J Bacteriol 173(9):2864-71

 [64] Gaudu P, Weiss B, 1996, SoxR, a [2Fe-2S] transcription factor, is active only in its oxidized form., Proc Natl Acad Sci U S A, 93(19):10094 10.1073/pnas.93.19.10094

 [65] Hidalgo E, Ding H, Demple B, 1997, Redox signal transduction via iron-sulfur clusters in the SoxR transcription activator., Trends Biochem Sci, 22(6):207 10.1016/s0968-0004(97)01068-2

 [66] Griffith KL, Shah IM, Wolf RE, 2004, Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons., Mol Microbiol, 51(6):1801 10.1046/j.1365-2958.2003.03952.x

 [67] Shah IM, Wolf RE, 2006, Sequence requirements for Lon-dependent degradation of the Escherichia coli transcription activator SoxS: identification of the SoxS residues critical to proteolysis and specific inhibition of in vitro degradation by a peptide comprised of the N-terminal 21 amino acid residues., J Mol Biol, 357(3):718 10.1016/j.jmb.2005.12.088

 [68] Graham AI., Sanguinetti G., Bramall N., McLeod CW., Poole RK., 2012, Dynamics of a starvation-to-surfeit shift: a transcriptomic and modelling analysis of the bacterial response to zinc reveals transient behaviour of the Fur and SoxS regulators., Microbiology 158(Pt 1):284-92

 [69] Thomas M, Benov L, 2018, The Contribution of Superoxide Radical to Cadmium Toxicity in E. coli., Biol Trace Elem Res, 181(2):361 10.1007/s12011-017-1048-5

 [70] Wang A, Crowley DE, 2005, Global gene expression responses to cadmium toxicity in Escherichia coli., J Bacteriol, 187(9):3259 10.1128/JB.187.9.3259-3266.2005

 [71] Izzo L, Matrella S, Mella M, Benvenuto G, Vigliotta G, 2019, Escherichia coli as a Model for the Description of the Antimicrobial Mechanism of a Cationic Polymer Surface: Cellular Target and Bacterial Contrast Response., ACS Appl Mater Interfaces, 11(17):15332 10.1021/acsami.9b02903

 [72] Gregorchuk BSJ, Reimer SL, Green KAC, Cartwright NH, Beniac DR, Hiebert SL, Booth TF, Chong PM, Westmacott GR, Zhanel GG, Bay DC, 2021, Phenotypic and Multi-Omics Characterization of Escherichia coli K-12 Adapted to Chlorhexidine Identifies the Role of MlaA and Other Cell Envelope Alterations Regulated by Stress Inducible Pathways in CHX Resistance., Front Mol Biosci, 8(None):659058 10.3389/fmolb.2021.659058

 [73] Poole RK, 2005, Nitric oxide and nitrosative stress tolerance in bacteria., Biochem Soc Trans, 33(Pt 1):176 10.1042/BST0330176

 [74] Touati D, 2000, Sensing and protecting against superoxide stress in Escherichia coli--how many ways are there to trigger soxRS response?, Redox Rep, 5(5):287 10.1179/135100000101535825

 [75] Cabiscol E, Tamarit J, Ros J, 2000, Oxidative stress in bacteria and protein damage by reactive oxygen species., Int Microbiol, 3(1):3 None



RegulonDB